Signatures of nanoflares and turbulence observed in EUV by SoHO/SUMER

Éric Buchlin^{1,2}

Jean-Claude Vial¹ Philippe Lemaire¹

¹Institut d'Astrophysique Spatiale CNRS – Université Paris Sud, Orsay, France

²Dipartimento di Astronomia e Scienza dello Spazio Arcetri, Università di Firenze, Italy

eric.buchlin@ias.fr

Four Solar Cycles of Space Instrumentation — Philippe Lemaire 19 November 2004

Éric Buchlin Nanoflares and turbulence

Small-scale heating events in the corona

Heating in the corona is *impulsive* \longrightarrow "events", which may be small (nanoflares, Parker 1988)

Event energies distributed as power-laws. Hudson (1991): Pr(E)

EIT 17.1 nm, 11 Sep 1997

Turbulence and small scales

Reynolds number in corona: $\approx 10^{14}$

Turbulence \implies high complexity, and energy cascade on wide range of scales, up to 10 m (unresolved!)

- Small structures:
- \longrightarrow allow high dissipation efficiency
- → dissipation in these structures could correspond to nanoflares

Need of *statistics*

EIT 17.1 nm, 11 Sep 1997

SUMER data set

- *Full Sun* images, rastered by spectroheliograph slit
- 36 images, April to October 1996
- Resolution: 1.5×1 arcsec²
- Line parameters computed onboard (information loss, but still spectroscopic measurement)
- Some reference spectra (whole detector)

Lines

Parameters (computed onboard):

- (0) S VI 933 intensity (maximum)
- (1) S VI 933 Doppler velocity
- (2) S VI 933 line width
- (3) Ly ϵ intensity
- (4) S VI 944 intensity

Data correction and calibration

 Empirical correction of systematic errors due to instrumental effects (flat field, distorsion...)

Data correction and calibration

 Empirical correction of systematic errors due to instrumental effects (flat field, distorsion...)

• Velocity unit: 1 pixel redshift (14 km/s)

Field values distributions

S VI 933 intensity:

Field values distributions

S VI 933 intensity:

S VI 933 velocity:

Introduction Observations Events Turbulence Conclusions Data Lines Calibration Distributions Noise

Noise (S VI 933 velocity)

Problem: 3 s exposure time only Noise simulations (as in Wilhelm 1989, ESA SP-1104), for velocity, superimposed on intensity-velocity scatter plot:

Noise is much lower for intensity

Introduction Observations Events Turbulence Conclusions SUMER Literature

Distributions of SUMER intensity events

S VI 933, threshold is $\overline{I} + \sigma_I$ 21 July 1996 (same for other dates)

- Detection of events: one event = an area above an intensity threshold
- Get *statistics* of their characteristics.

Introduction Observations Events Turbulence Conclusions SUMER Literature

Distributions of SUMER intensity events

S VI 933, threshold is $\overline{I} + \sigma_I$ 21 July 1996 (same for other dates)

- Detection of events: one event = an area above an intensity threshold
- Get *statistics* of their characteristics.

Tried to find also "velocity events" (kinetic energy), but too much noise!

Distributions of events (literature)

- Aletti *et al.* 2000: EIT 195 intensity, threshold
- Parnell & Jupp 2000: TRACE intensity, with clustering (threshold) with some time information
- ...
- Some of them summarized in Aschwanden *et al.* 2000:

Distributions of events (literature)

- Aletti *et al.* 2000: EIT 195 intensity, threshold
- Parnell & Jupp 2000: TRACE intensity, with clustering (threshold) with some time information
- ...
- Some of them summarized in Aschwanden *et al.* 2000:

Fourier spectra of the fields

S VI 933 intensity:

Martens & Gomez 1992, Benz *et al.* 1997 (Yohkoh/SXT), Berghmans *et al.* 1998 (SOHO/EIT) $\rightarrow \approx -2.5$

Espagnet *et al.* 1993 (photosphere) $\longrightarrow \approx -5/3$

Fourier spectra of the fields

S VI 933 intensity:

Martens & Gomez 1992, Benz *et al.* 1997 (Yohkoh/SXT), Berghmans *et al.* 1998 (SOHO/EIT) $\rightarrow \approx -2.5$

Espagnet *et al.* 1993 (photosphere) $\longrightarrow \approx -5/3$

S VI 933 velocity:

Would need less noise to get (the first?) velocity spectrum in the corona

Intermittency

 $\longrightarrow \text{deviation from Kolmogorov 41 turbulence theory} \\ \implies \text{shape of distribution of increments } \delta_\ell a \text{ of field } a \text{ depends on scale } \ell \\$

Signature: normalized structure functions $\frac{\langle |\delta_{\ell}a|^q \rangle}{\langle |\delta_{\ell}a|^2 \rangle^{q/2}}$ get larger for small scales ℓ

Examples:

- Abramenko et al. 2002, BBSO, Huairou and SOHO/MDI magnetograms
- Patsourakos & Vial 2002, SUMER lightcurves

(flatness for
$$q = 4$$
)

S VI 933 intensity:

Intermittency

(flatness for
$$q = 4$$
)

Intermittency

Some slight intermittency visible in spite of noise

- Signatures of small-scale heating: events distributions, field Fourier spectra
- Too much noise in velocity field to get events or spectra. Compromise between low noise (exposure time, resolution) and large number of pixels (necessary for statistics)
- Intermittency: quite strong in intensity, still visible in velocity

- Signatures of small-scale heating: events distributions, field Fourier spectra
- Too much noise in velocity field to get events or spectra. Compromise between low noise (exposure time, resolution) and large number of pixels (necessary for statistics)
- Intermittency: quite strong in intensity, still visible in velocity

- Signatures of small-scale heating: events distributions, field Fourier spectra
- Too much noise in velocity field to get events or spectra. Compromise between low noise (exposure time, resolution) and large number of pixels (necessary for statistics)
- Intermittency: quite strong in intensity, still visible in velocity

- Signatures of small-scale heating: events distributions, field Fourier spectra
- Too much noise in velocity field to get events or spectra. Compromise between low noise (exposure time, resolution) and large number of pixels (necessary for statistics)
- Intermittency: quite strong in intensity, still visible in velocity

Thanks to Philippe!

