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ABSTRACT

Context. Spectral lines of helium are commonly observed on the Sun. These observations contain important information about phys-
ical conditions and He/H abundance variations within solar outer structures.
Aims. The modeling of chromospheric and coronal loop-like structures visible in hydrogen and helium lines requires the use of ap-
propriate diagnostic tools based on NLTE radiative tranfer in cylindrical geometry.
Methods. We use iterative numerical methods to solve the equations of NLTE radiative transfer and statistical equilibrium of atomic
level populations. These equations are solved alternatively for hydrogen and helium atoms, using cylindrical coordinates and pre-
scribed solar incident radiation. Electron density is determined by the ionization equilibria of both atoms. Two-dimensional effects
are included.
Results. The mechanisms of formation of the principal helium lines are analyzed and the sources of emission inside the cylinder are
located. The variations of spectral line intensities with temperature, pressure, and helium abundance, are studied.
Conclusions. The simultaneous computation of hydrogen and helium lines, performed by the new numerical code, allows the con-
struction of loop models including an extended range of temperatures.
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1. Introduction

Observation of the upper solar atmosphere with high angular res-
olution reveals a wealth of filamentary structures produced by
magnetic fields. To model these objects, we developed a series
of NLTE radiative transfer codes that are described in the present
series of papers. Among the filamentary objects relevant to this
kind of modeling, we can mention: cool coronal loops, chromo-
spheric fine structure (cf. Patsourakos et al. 2007), prominence
(or filament) threads (cf. Heinzel 2007), and spicules. Paper I
(Gouttebroze 2004) dealt with 1D (i.e. radius dependent) cylin-
drical models, a case applicable to cylindrical structures with
a vertical axis exposed to an incident radiation field indepen-
dent of azimuth. Papers II and III (Gouttebroze 2005, 2006, re-
spectively) treated the case of 2D (radius and azimuth depen-
dent) cylinders. Paper II was restricted to a 2-level atom, while
Paper III used a multilevel hydrogen atom. Papers IV and V
(Gouttebroze 2007, 2008) were dedicated to radiative equilib-
rium and velocity fields, respectively. All these papers dealt with
the hydrogen atom. A certain amount of helium was included in
the state equation, but it was assumed to be neutral and without
any influence on the radiation field, as well as on the electron
density.

In the present paper, we assume that the cylinders are filled
with a mixture of hydrogen and helium, and treat NLTE radia-
tive transfer and statistical equilibrium of level populations for
both atoms in two dimensions. The helium model atom includes
the three stages of ionization, and the electron density is recom-
puted at each iteration in order to satisfy the equation of electric

neutrality. In Sect. 2, we describe the computational methods
used in the new numerical code. The results concerning hydro-
gen and helium ionization are detailed in Sect. 3. In Sect. 4, we
study the formation of helium lines using a reference model de-
fined in Sect. 2. Finally, in Sect. 5, we show how the helium line
intensities react to changes in temperature, pressure and helium
abundance.

2. Numerical methods

2.1. Formulation

The computation includes the numerical solution of the equa-
tions of NLTE radiative transfer for hydrogen and helium atoms,
statistical equilibrium of level populations (for both atoms),
pressure equilibrium, and electric neutrality. As in Papers II
and III, the object under consideration is a cylinder of diame-
ter D, whose axis makes an angle α with the local vertical to the
solar surface (this angle may vary between 0 and 90◦). The two
active dimensions for radiative transfer are the distance to axis r
and the azimuth ψ. The method of resolution is of the MALI type
(Rybicki and Hummer 1991). The special form of equations for
two-dimensional azimuth dependent (2DAD) cylindrical geom-
etry and the method of solution, which are described in detail in
Paper II, will not be repeated here. The equations of statistical
equilibrium, independent of geometry, are treated in Paper I. In
Paper II, we also described the method to compute the intensi-
ties incident on the cylinder, at different wavelengths, from the
knowledge of the emission by the Sun, the inclination α, and
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the altitude H. These incident intensities are also functions of
azimuth, except in the special case α = 0. The condition for
electric neutrality may be written

Ne = NHII + NHeII + 2 NHeIII, (1)

where Ne is the electron density, NHII the number density of ion-
ized hydrogen (protons), and NHeII and NHeIII the number densi-
ties of helium atoms in the second and third stages of ionization,
respectively. If NH and NHe are the total densities of hydrogen
and helium, respectively, and NHI and NHeI the corresponding
densities of neutral atoms, the law of particle conservation yields

NH = NHI + NHII (2)

and

NHe = NHeI + NHeII + NHeIII. (3)

The gas pressure is

Pg = (NH + NHe + Ne) k T, (4)

where k is the Boltzmann constant and T the temperature. The
parameter to check the convergence of iterations is the electron-
to-hydrogen ratio ω = (Ne/NH). If AHe is the (He/H) abundance
ratio, Eq. (4) becomes

Pg = NH (1 + AHe + ω) k T. (5)

The model atom for hydrogen includes 5 discrete levels plus 1
continuum. The equations of radiative transfer for the 10 dis-
crete transitions and the 5 bound-free transitions are treated in
detail, except in the case where the optical thicknesses are very
low, which generally happens for continua from subordinate lev-
els. The model atom for helium is the same as in Labrosse &
Gouttebroze (2001, 2004). It contains 34 levels: 29 for He I, 4
for He II, and 1 for He III. The main part of this model comes
from the neutral helium model of Benjamin et al. (1999). It is
complemented with parameters of various origins, as described
in Labrosse and Gouttebroze (2001). The number of permitted
radiative transitions is 76, but most of them are optically thin
under the usual conditions. All discrete transitions, for hydro-
gen as for helium, are treated under the assumption of complete
frequency redistribution.

2.2. Computational scheme

The computation is organized along two parallel series of rou-
tines, one for hydrogen, the other for helium. In each series of
routines, the variables dependent on the atomic structures as
atomic parameters, populations, intensities in different transi-
tions are gathered into a specific Fortran “common”, which is
ignored by the main program. This main program only contains
geometric (D, r, ψ, etc.) and physical (Pg, T , vT , etc.) variables
and the populations (NHII, NHeII, etc.) necessary to determine the
ionization. The main phases of computations are:

– initialization: determination of geometrical, physical and
atomic parameters. The incident intensities are also com-
puted for each position at the surface of the cylinder and each
direction, according to the method explained in Paper II;

– first evaluation of level populations, in the optically thin ap-
proximation. By averaging the incident intensities, we obtain
mean intensities in the different transitions of hydrogen and
helium. From these intensities and physical parameters, we
compute the radiative and collisional transition rates. Then,

we solve statistical equilibrium equations to obtain atomic
level populations at each point of the (r, ψ) mesh. Since the
transition rates depend on electron density, it is necessary to
iterate. We start from an arbitrary value of ω (e.g. ω = 0.5)
and, using Eqs. (3) and (5), successively deduce:

NH =
Pg

(1 + AHe + ω) k T
, (6)

NHe = NHAHe, (7)

and

Ne = NH ω. (8)

After computation of transition rates and solution of statisti-
cal equilibrium equations, we compute NHII, NHeII, and NHeIII
by adding the populations of individual levels together, and
deduce a new value of ω by

ω =
NHII + NHeII + 2 NHeIII

NH
· (9)

These operations are repeated until convergence.
– full iterations with radiative transfer. This is the main part of

the computation. The external scheme is similar to that of the
preceding step, with a variableω controlling the convergence
of iterations but, in the meantime, the internal intensities for
all transitions of hydrogen and helium are recomputed ac-
cording to the principles of NLTE radiative transfer: absorp-
tion coefficients are derived from atomic level populations
(determined in the preceding iteration). Then, intensities are
computed by solving the transfer equation along each ray
and integrating with respect to direction and frequency. At
the same time, the diagonal terms of the Λ operator are cal-
culated by the method of Rybicki & Hummer (1991). The
formulae appropriate to the cylindrical geometry are given
in Paper II. The new intensities and the diagonal Λ coef-
ficients are used to form preconditioned statistical equilib-
rium equations, similar to those of Werner & Husfeld (1985).
These equations are solved to obtain new level populations.
Generally, one radiative transfer iteration for hydrogen and
one for helium, between two iterations on ω, are sufficient
to obtain a good convergence. In a few cases, it was neces-
sary to perform two radiative transfer iterations for one ω
iteration. These cases are indicated by an asterisk in the last
column of Table 1.

2.3. Models

The model cylinders are defined by a series of geometric and
physical parameters. The geometrical ones, diameter D, alti-
tude H and inclination α, have been defined above. Physical
parameters include: gas pressure Pg, temperature T , microtur-
bulent velocity vT , and relative helium abundance AHe. The code
allows the definition of each of these parameters as a function
of r and ψ, but this possibility is not used in practice, except
for the temperature. A summary of models used in the present
paper is displayed in Table 1. First, there is a series of isother-
mal models (“t1” to “t11”) with temperature ranging from 6000
to 105 K. Their diameter is fixed to 1000 km, their pressure to
0.1 dyn cm−2, helium abundance to 0.1, and microturbulent ve-
locity to 5 km s−1. Other models have a prescribed temperature
variation T (r), which comes from Paper III, and is represented
in the upper part of Fig. 1 (models using this temperature dis-
tribution are indicated by “var.” in the third column of Table 1).
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Table 1. Summary of cylindrical thread models.

Name Pg (dyn cm−2) T (K) AHe vT (km s−1) D (km) nb. iter.
t1 0.1 6000 0.1 5 1000 91∗

t2 0.1 8000 0.1 5 1000 81
t3 0.1 10 000 0.1 5 1000 76
t4 0.1 15 000 0.1 5 1000 56∗

t5 0.1 20 000 0.1 5 1000 71∗

t6 0.1 30 000 0.1 5 1000 43
t7 0.1 40 000 0.1 5 1000 5
t8 0.1 50 000 0.1 5 1000 5
t9 0.1 65 000 0.1 5 1000 5

t10 0.1 80 000 0.1 5 1000 5
t11 0.1 100 000 0.1 5 1000 5
p1 0.02 var. 0.1 5 2000 45
p2 0.03 var. 0.1 5 2000 38
p3 0.05 var. 0.1 5 2000 33

p4 (or a4) 0.1 var. 0.1 5 2000 42
p5 0.2 var. 0.1 5 2000 40
p6 0.3 var. 0.1 5 2000 39
p7 0.5 var. 0.1 5 2000 51
a1 0.1 var. 0.01 5 2000 41
a2 0.1 var. 0.02 5 2000 41
a3 0.1 var. 0.05 5 2000 42
a5 0.1 var. 0.15 5 2000 42
a6 0.1 var. 0.20 5 2000 43
a7 0.1 var. 0.30 5 2000 43

The mean model “p4” (or “a4”) is similar to that of Paper III.
In the series “p1” to “p7”, we change the pressure while keep-
ing the other parameters constant. In the series “a1” to “a7”, we
investigate the effects of helium abundance. The last column of
Table 1 indicates the number of iterations necessary to achieve
the convergence on ω, the criterion being fixed to 10−6 and the
minimum iteration number to 5.

3. Ionization

The introduction of helium ionization in models allows the elec-
tron density to be greater than the hydrogen density. Let ξ =
(NHII/NH) be the ionization ratio for hydrogen, and similarly
η1 = (NHeII/NHe) and η2 = (NHeIII/NHe) be the corresponding
ratios for the two stages of helium ionization. Equation (9) be-
comes

ω = ξ + AHe η1 + 2 AHe η2. (10)

The ionization ratios ξ, η1 and η2 are principally controlled by
temperature. However, near the surface of the structure, the in-
fluence of incident radiation becomes more important and tends
to moderate the effects of temperature.

3.1. Model with temperature gradient

In the standard model “p4”, the temperature increases with the
distance to the axis, as shown in the upper part of Fig. 1. In
the core of the cylinder at 6000 K, helium is essentially neu-
tral and hydrogen is weakly ionized, with a ratio ξ between 0.2
and 0.3. The first ionization potential of hydrogen being lower
than that of helium, ξ begins to increase first when moving to-
wards the exterior. This major change in hydrogen ionization
occurs between 0.5R and 0.7R. For r > 0.7R, which corresponds
to temperatures T > 20 000 K, hydrogen is almost completely

ionized. The first stage of ionization for helium (ratio η1) occurs
between (r/R) = 0.7 and 0.8, i.e. temperatures between 20 000
and 35 000 K. The second stage of helium ionization starts near
(r/R) = 0.9, which corresponds to a temperature of 60 000 K.
These variations of ξ, η1 and η2 are represented in the middle part
of Fig. 1. The consequences for electron density are shown in the
lower part of Fig. 1, with a comparison to the case (Paper III)
where helium ionization was neglected. The two curves practi-
cally coincide up to T = 20 000 K, since hydrogen is the only
electron contributor there. Between 30 000 and 60 000 K, ω re-
mains close to 1.1, the main part of helium atoms being singly
ionized. Near the surface, ω tends to 1.2, that is, the maximum
possible value since we have assumed AHe = 0.1.

3.2. Isothermal models

In the standard model, the variations of temperature with r masks
the effects of incident radiation on ionization. To distinguish be-
tween thermal and radiative effects, it is necessary to examine
the variations of ionization within isothermal models. We con-
sider the series of “t” models described in Table 1. Here, the
cylinders have horizontal axes, but the number densities are av-
eraged over ψ to obtain a single ionization curve (ξ(r), η1(r)
or η2(r)) for each model and each ion species. Figure 2 repre-
sents the variations of ionization of hydrogen and helium for the
different models of this series. It appears that the curves ξ(r)
and η1(r) are generally flat, which confirms that the effects of
temperature dominate those of incident radiation. This is es-
pecially true for helium. For hydrogen, the ξ(r) curves exhibit
some inflexions near the surface. For the cool models at 6000
and 8000 K, the incident radiation tends to increase hydrogen
ionization near the surface. In contrast, a decrease appears near
the surface for models at 10 000 and 15 000 K. For temperatures
higher than 20 000 K, the curves ξ(r) are flat: hydrogen is almost
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Fig. 1. Variations of temperature T and population ratios with the dis-
tance to the axis (r), for the model “p4” at the foot of the loop (α = 0).
Abscissae: distance to axis relative to the total radius R. Top: tem-
perature. Middle: ionization ratios for hydrogen (ξ: dot-dashed line)
and helium (η1: dashed line; η2: continuous line). Bottom: electron-to-
hydrogen ratio ω (dashed line: model assuming neutral helium; contin-
uous line: model with both hydrogen and helium ionization).

completely ionized, so that the cylinders are optically thin in all
transitions of the hydrogen atom, and consequently insensitive to
incident radiation. Hydrogen is approximately half-ionized for
T = 10 000 K. The curves η1(r) corresponding to the first ion-
ization stage of helium are very flat, but a slight decrease near
the edge may be observed for the model at 20 000 K. The princi-
pal change of ionization for helium occurs between 20 000 K
(η1 ≈ 0.3) and 30 000 K (η1 ≈ 0.9). Between 30 000 and
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Fig. 2. Variations of the ionization ratios ξ (top) and η1 (bottom) with r
for different isothermal models (for clarity, not all models are repre-
sented). Number densities are averaged with respect to the azimuth ψ.
Symbols for hydrogen: open circles: T = 6000 K; full circles: 8000 K;
open squares: 10 000 K; full squares: 15 000 K; crosses: 20 000 K; con-
tinuous line: 50 000 K. Same symbols for helium, plus: dotted line:
30 000 K; dashed line: 65 000 K; dot-dashed line: 80 000 K.

65 000 K, more than 90% of helium atoms are in the first stage
of ionization (nearly 100% at 50 000 K). At higher temperatures,
η1 decreases while η2 increases. At 80 000 K, the numbers of
He II and He III ions are approximately equal. At 100 000 K,
η1 is lower than 0.2, and consequently η2 greater than 0.8. The
electron-to-hydrogen ratio ω (not represented) may be easily de-
duced from the curves of Fig. 2, according to Eq. (10). At low
temperatures,ω is nearly equal to ξ. In contrast, above 50 000 K,
there are no longer neutral atoms, so that ξ = 1 and η2 = 1 − η1,
which gives ω ≈ 1 + 0.1 × (2 − η1).

4. Formation of helium lines

The computations described in Sect. 2 provide us with absorp-
tion coefficients and source functions in the different lines of
hydrogen and helium, which may be subsequently used to cal-
culate the intensities emerging from the cylinder. The introduc-
tion of helium ionization has little influence on hydrogen lines,

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811483&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811483&pdf_id=2
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Fig. 3. Emission of the loop model “p4” in several lines of helium: He I 10 830 Å (top, left); He I 584 Å (top, right); He I 5876 Å (bottom,
left); He II 304 Å (bottom, right). Frequency-integrated intensities are normalized to the maximum value of each image. Horizontal and vertical
coordinates indicate distances in megameters.

which are formed in regions where helium is essentially neutral.
Since hydrogen lines have been treated in preceding papers, we
concentrate here on helium lines, and use the standard model
“p4” to study their formation. The absorption coefficients and
source functions for the different values of r and ψ, are com-
puted for 7 values of the inclination, from α = 0 to α = 90◦.
Then, using an interpolation procedure described in Paper III,
we construct a semi-toric loop model and obtain the intensities
emitted towards the observer. Figure 3 shows the intensities, in-
tegrated over frequency, for a few lines chosen among the most
important of the helium spectrum. The images corresponding to
the two optical or infrared lines, say 10 830 and 5876 Å, look
very similar to each other. The consideration of absorption coef-
ficients indicates that the cylinder is optically thin for these two
transitions (or marginally thick for 10 830 at line center). In con-
trast, the two ultraviolet lines, He I 584 and He II 304 Å, are
definitely optically thick. The structure seems broader in He II
than in He I lines, which is explained below.

To discuss the process of formation, it is sufficient to con-
sider the top of the loop, equivalent to a cylinder with a horizon-
tal axis. For an observer looking at the cylinder in a direction
normal to the axis, the path of photons is represented in Fig. 4.
The ray enters the cylinder at point A and exits at point B. If
R is the radius of the cylinder and r⊥ the distance between the
axis and the ray, the abscissae of A and B are −smax and smax,
respectively, with

smax =

√
R2 − r2⊥. (11)

O

M

A
B

r

I (s)ν I (s   )ν max

cylinder
section

towards
observer

towards
the Sun

Fig. 4. Ray path through the cylinder.

Let κν and S ν be the absorption coefficient and the source func-
tion, respectively, at frequency ν. From the transfer equation

dIν
ds
= κν(S ν − Iν), (12)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811483&pdf_id=3
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Fig. 5. Total emergent intensities computed from model “p4”, for dif-
ferent helium lines vs. position across the cylinder. Abscissae are in
megameters and grow as the distance from the Sun. Ordinates are in-
tensities in erg cm−2 s−1 sr−1. Dashed line: He I 10 830 Å; dotted line:
He I 5876 Å; dot-dashed line: He I 584 Å; continuous line: He II 304 Å.

and the boundary condition

Iν(−smax) = 0, (13)

we deduce the emergent intensity

Iν(smax) =
∫ smax

−smax

κν(s) S ν(s) e−τν(s) ds, (14)

with the optical thickness between the running point M (ab-
scissa s) and B

τν(s) =
∫ smax

s
κν(s′)ds′. (15)

The total emergent intensity for the line under consideration is
then

Iline =

∫
line

Iν(smax) dν. (16)

These frequency-integrated intensities have been computed as
functions of r and ψ for different helium lines. They are shown
in Fig. 5. For all these lines, we observe a global decrease of
intensities from the lower to the upper edge, which is due to
the decrease of incident radiation. However, several differences
may be noticed. Concerning ultraviolet optically thick lines, the
cylinder appears broader in the He II resonance line at 304 Å
than in the corresponding line for He I at 584 Å. The two triplet
lines of He I under consideration have in common a transversal
variation with three smooth peaks.

To locate the origin of emission inside the cylinder, we
rewrite Eq. (14) as

Iν(smax) =
∫ smax

−smax

Cν(s) ds (17)

with

Cν(s) = κν(s) S ν(s) e−τν(s). (18)

Thus, Eq. (16) becomes

Iline =

∫ smax

−smax

C(s) ds (19)

with

C(s) =
∫

line
Cν(s) dν. (20)

C(s) is the contribution function appropriate for the frequency-
integrated emergent intensity. This function is plotted as shades
of gray in Fig. 6 for the three lines at 10 830, 584 and 304 Å. The
figure for the 5876 Å line is very similar to that of the 10 830 Å
line. The existence of three maxima of emission for the intensity
at 10 830 Å is due to the existence of two zones in the contribu-
tion function: a central patch and a ring. The patch corresponds
to radiative processes of emission by low temperature matter,
while the ring corresponds to a range of temperature where the
maximum excitation of He I is occuring. The radiative processes
of emission that occur in the central patch include direct scatter-
ing of incident radiation and the photoionization-recombination
process (Hirayama 1971; Zirin 1975). Since these two processes
are dependent on incident radiation, the contribution functions
in the central zone decrease with height. In contrast, the ring is
produced by collisional excitation, so that it is practically inde-
pendent of ψ. The contribution function for the 584 Å line is
concentrated in a single ring, without a central part: since the
line is optically thick, the front part of the ring only contributes
to intensity. The same is true for the 304 Å line but, in this case,
the emitting layer is located at high temperature, very close to
the surface. For this reason, the loop looks broader in this tran-
sition than in the He I lines.

5. Influence of physical parameters

5.1. Temperature

To study the effects of temperature on emitted intensities, we
use the series of isothermal models ranging from “t1” (6000 K)
to “t11” (105 K). The cylinders under consideration have a hor-
izontal axis (α = 90◦) and the emitted intensities are averaged
along the transversal direction. This spatial averaging is conve-
nient for comparison with most observations, where the width of
the loops corresponds to a small number of pixels. Frequency-
integrated intensities, for the different models and the four prin-
cipal lines, are displayed in Fig. 7. The He I triplet lines at 10 830
and 5876 Å again show a similar behavior: the intensities de-
crease from 6000 to 15 000 K, rise from 15 000 to 30 000 K,
and decrease again at higher temperatures. As mentioned in the
preceding section, these lines have two sources of emission: ra-
diative (dependent on incident radiation) and collisional. At low
temperatures, scattering is dominant, and the decrease of optical
thickness results in a decrease of scattered radiation. At higher
temperatures, collisional excitation grows and, despite the de-
crease of optical thickness, the emitted intensity rises. For tem-
peratures greater than 30 000 K, the effect of the opacity de-
crease (principally due to ionization, as may be seen in Fig. 2)
dominates that of the excitation increase, so that the intensity
decreases again. The intensity variation of the resonance line at
584 Å is similar, but this line is optically thick at low or medium

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811483&pdf_id=5
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Fig. 6. Contribution functions corresponding to the standard model with
a horizontal axis, for three lines of helium. Top: He I 10 830 Å; Middle:
He I 584 Å; Bottom: He II 304 Å. Bright zones correspond to the max-
imum of the function. Directions are the same as in Fig. 4 (observer at
right, Sun below).

temperatures, so that the slope of the curve between 6000 and
15 000 K is not as steep as that of the triplet lines. At high tem-
peratures, the decrease of the 584 Å line intensity is faster than
that of the triplet lines, which may be due to the decrease of den-
sity. According to the analysis of neutral helium line formation
by Andretta and Jones (1997), the intensity ratio (triplet/singlet
lines) decreases with increased density. The behavior of the
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Fig. 7. Frequency-integrated intensities, averaged over position, emitted
by isothermal models “t1” to “t11”. Intensities (erg cm−2 s−1 sr−1) are
plotted as functions of the temperature (K) of the model, in 4 transitions:
He I 10 830 Å (open circles); He I 584 Å (full circles); He I 5876 Å
(open squares); He II 304 Å (full squares).

resonance line of He II is quite different and shows a slow
and steady increase of intensity with temperature until about
80 000 K, followed by a decrease. Most He II lines reach their
peak of emission between 5 × 104 K and 105 K (see for instance
Laming and Feldman 1993 for the 1640 Å line).

The consideration of line profiles (Fig. 8) gives another
insight to the effects of temperature variations. The profiles
of triplet lines are nearly Gaussian, a typical feature of opti-
cally thin lines, their widths increasing with temperature. The
584 Å line exhibits a reversed profile from 6000 to 30 000 K.
At 50 000 K, the reversal disappears, indicating that the line is
optically thin. This is due to the fast decrease of neutral helium
populations above 3 × 104 K (see Fig. 2). At 105 K, the central
intensity of the 584 Å line is two orders of magnitude lower than
at 5× 104 K. For the He II line at 304 Å, the line center intensity
is roughly constant until 5 × 104 K, and the global increase of
intensity is due to the progressive broadening of the line profile.
At these temperatures, the main process of emission is the scat-
tering of incident radiation, and the broadening of the line is due
to the joint effects of opacity (increase of η1) and temperature
(Doppler effect). Above 5 × 104 K, η1 begins to decrease, but
collisional excitation grows. These two competing effects pro-
duce a maximum of intensity near 8 × 104 K. In Fig. 8, one can
compare the profiles of the 304 Å line at 5 × 104 and 105 K: the
higher temperature profile is more intense at line center, but the
intensity decreases more rapidly in the wings, as a consequence
of the lower opacity.

5.2. Pressure

The effects of gas pressure on emitted intensities are studied by
means of a series of models “p1” to “p7”. These models have the
same variation of temperature as the standard model, but differ
from each other by pressures ranging from 0.02 to 0.5 dyn cm−2.
Frequency-integrated intensities for the principal helium lines
emitted by these models are displayed in Fig. 9. It appears that

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811483&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811483&pdf_id=7
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Fig. 8. Helium line half-profiles emitted by five
isothermal models: continuous line: “t1” (6000 K);
dashed line: “t4” (15 000 K); dotted line: “t6”
(30 000 K); dot-dashed line: “t8” (50 000 K); long-
dashed line: “t11” (100 000 K). Each frame corre-
sponds to a specific line, as indicated.

all intensities increase with pressure, but the slopes of the curves
differ from one line to another. For neutral helium lines, the vari-
ation may be understood by considering the two main processes
of emission: scattering of incident radiation and collisional exci-
tation. In the optically thin case, the first process yields intensi-
ties proportional to atom populations. The second emission pro-
cess, collisional excitation, which is proportional not only to the
emitting atom density, but also to the electron density, tends to
produce a quadratic variation of emission as a function of pres-
sure. These considerations apply to the two He I lines at 10 830
and 5876 Å. It is visible in Fig. 9 that the emitted intensities for
these two lines are proportional to pressure from 0.02 to about
0.2 dyn cm−2, and that the slope slightly increases at higher pres-
sures, when collisions cease to be negligible. The same consid-
erations apply to the 584 Å line, but the change of slope be-
gins at lower pressures, around 0.1 dyn cm−2. The case of the
He II 304 Å line is more complicated, since the slope of I(P)
is less than linear below 0.1 dyn cm−2 and greater than linear at
higher pressures. It is visible on profiles (Fig. 8) that this line is
optically thick and formed in the outermost part of the cylinder
(Fig. 6). Whatever the pressure, the incident ultraviolet radiation
from the Sun ionizes helium near the surface of the cylinder and
creates a zone which scatters the 304 Å radiation. This part of
emission due to scattering is nearly constant and constitutes the
main contribution at low pressures (0.02 to 0.05 dyn cm−2). In
contrast, at high pressures (0.2 to 0.5 dyn cm−2), collisional ex-
citation becomes dominant and results in a quasi-quadratic vari-
ation of I(P).

5.3. Helium abundance

The abundance of helium is one of the most important
parameters when analysing helium lines (see for instance
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Fig. 9. Frequency-integrated intensities, averaged over position, emit-
ted by models “p1” to “p7”. Abscissae: gas pressure inside the cylinder
(dyn cm−2). Ordinates: intensities in erg cm−2 s−1 sr−1. Spectral lines:
He I 10 830 Å (open circles); He I 584 Å (full circles); He I 5876 Å
(open squares); He II 304 Å (full squares).

Andretta et al. 2008, and references therein). Some observations,
like that of filaments by Gilbert et al. (2007) suggest that very
important changes of helium abundance may occur between the
top, and the base of these objects. To evaluate the importance
of this parameter to the emission of cylinder threads, we use a

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811483&pdf_id=8
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Fig. 10. Frequency-integrated intensities, averaged over position, emit-
ted by models “a1” to “a7”. Abscissae: log (abundance ratio AHe).
Ordinates: intensities in erg cm−2 s−1 sr−1. Spectral lines: He I 10 830 Å
(open circles); He I 584 Å (full circles); He I 5876 Å (open squares);
He II 304 Å (full squares).

series of models (“a1” to “a7”), with the same pressure and tem-
perature variation as the standard model, but helium to hydrogen
ratios AHe varying from 0.01 to 0.3. The variations of intensi-
ties as functions of AHe are displayed in Fig. 10. The interpre-
tation of these curves is relatively easy. As long as the cylinder
is optically thin in the considered transition, the intensity is pro-
portional to AHe. This is the case for the 10 830 and 5876 lines
until AHe = 0.05. For higher abundances, the slopes of the curves
slightly decrease as the line centers begin to saturate. For opti-
cally thick lines at 584 and 304 Å, the intensity is still a growing
function of abundance, but the slope is significantly lower than
that corresponding to proportionality.

6. Conclusion

At this stage of our project, it is possible to perform a modeling
of solar coronal loops including the following ingredients:

– NLTE radiative transfer in cylindrical geometry;
– 2 dimensions (radius and azimuth);
– statistical equilibrium of atomic level populations;
– self-consistent treatment of the two principal chemical ele-

ments: hydrogen and helium, including ionization;
– pressure equilibrium.

The numerical code produces in a single run spectral line pro-
files and intensities for the principal transitions of hydrogen and
helium, emitted in all directions. Some developments remain to
be done, such as the implementation of motions in helium rou-
tines (as was done for hydrogen in Paper V), or the treatment of
Lyman lines in partial redistribution. We also are willing to ap-
ply our code to the modeling of complex loop systems observed
in the solar atmosphere. We envisage to extend the code to some
minor chemical species, as a function of the observed spectral
lines.
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