FIOQIAGA - -Z457 "T7R!

Astron. Astrophys. 245, 171-181 (1991)

ASTRONOMY
AND
ASTROPHYSICS

An accelerated lambda iteration method for multilevel

radiative transfer

I. Non-overlapping lines with background continuum

G.B. Rybicki! and D.G. Hummer?*

! Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
2 Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology, Boulder,

CO 80309, USA
Received August 17, accepted October 4, 1990

Abstract. A method is presented for solving multilevel transfer
problems with non-overlapping lines and with background con-
tinuum (but no active continuum transfer). This method is based
on the use of an approximate lambda operator, which is either
the diagonal or a finite band of the “true” numerical lambda
operator. Linear, “preconditioned” equations of statistical equi-
librium are derived, the coefficients of which are found efficiently
using a new fast method for finding the diagonal elements (or a
band) of the “true” numerical lambda operator. The precondi-
tioned equations are used iteratively with the formal solution of
the transfer equation, so that the entire iteration scheme involves
solving only linear equations based on one previous iteration.
Applications of the method are made to several multilevel prob-
lems, including a model problem of Avrett & Loeser (1987) and
an eleven-level neutral helium atom. Convergence properties of
the method are systematically investigated for these problems,
using diagonal and tridiagonal approximate lambda operators,
with and without the acceleration technique of Ng (1974), and
the method has proved to be fast and reliable for line transfer
problems of this type. An appendix gives an improved version of
the Feautrier scheme that has much better numerical conditioning
for small optical depths.
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1. Introduction

Inrecent years, a very powerful group of closely related techniques
have emerged for the solution of radiative transfer and statistical
equilibrium problems; this general approach is known collectively
as Approximate (or Accelerated) Lambda Iteration (ALI). The
monochromatic lambda operator A, along a ray with direction
u is defined by

I, =4,[S.], 1y

where I,, is the mean intensity and S, is the source function,
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which is expressed in term of level populations. The common
thread among ALI methods is the use of approximate lambda
operators, which can be inverted with relative ease, and then
corrected iteratively.

As is well known, the process of iterating between the atomic
level populations and the radiation field (known as lambda it-
eration) in optically thick systems converges extremely slowly.
Each cycle of the iteration corresponds to photons moving about
one mean free path in the medium. In the cores of strong lines
photons have very short mean free paths, and this implies that
many iterations are required to move them any substantial dis-
tance. In a multilevel system, photons can also become “trapped”
in cyclic groups of transitions. With a properly chosen approx-
imate lambda operator, photons are propagated on a scale ap-
popriate to the medium as a whole, in a sense to be made clear
below.

These difficulties were overcome in Rybicki (1972, 1984) with
a modified form of the transfer problem in which only those
photons in the line wing were explicitly treated, while those in
the core were regarded as passive and were eliminated by sys-
tematically preconditioning the statistical equilibrium equations.
An important feature of this preconditioning is that all of the
equations remain linear. This so-called “core saturation” method.
converged very much more rapidly than normal lambda iteration.
As originally derived in Rybicki (1972) the method was intrin-
sically a multilevel one, and an analytic example of a simple
multilevel case was treated in that paper. The first extensive nu-
merical applications of core saturation to multilevel systems were
those of Flannery et al. (1979, 1980), who treated UV pumping
in N1 and Sin.

These two ideas: 1) solving the radiative transfer equation
approximately with a simplified operator, and 2) solving some
form of the modified statistical equilibrium equations at every
step of the iteration cycle, form the basis of all ALI methods.
Cannon (1973) later introduced a more formal approach for solv-
ing a two-level system with reduced effort, by use of the identity
Ay = Ay + (4, — A,), where A,, and A4, are the exact and
approximate operators, the latter with a simple inverse. This is
used as the basis of an iteration technique by writing

Ly = A,[S,] + (A, — AL)SH],

where S}, is the source function from the previous iteration. This
is inserted into the equations of statistical equilibrium and solved

12)
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for the updated source function S,,. Although this equation is
only approximate at each stage of the iteration, it is clear that it
becomes exact for the converged solution, where S,, = S},. Thus
no error is introduced into the solution by using Eq. (1.2), so
long as convergence is actually achieved. Roots of the iteration
method (1.2) go back at least to Jacobi, and it is well known in
numerical analysis as “operator splitting” (for a discussion of its
history, see Varga 1962). Because it was introduced into the field
of radiative transfer by Cannon (1973), it is most commonly
known as Cannon’s method.

As Cannon’s original work was confined to two-level systems,
it provides useful, but limited guidance to the construction of
multilevel methods. Scharmer (1981, 1984) expanded on the ideas
of Rybicki & Cannon and developed a well implemented mul-
tilevel code (Scharmer & Carlsson 1985) which has found wide
application. Scharmer’s work appears to have triggered wide in-
terest among stellar astrophysicists which in turn has lead to
further important developments. The central issue in these de-
velopments was the choice of the approximate operator. Although
Rybicki’s original choice was simply a diagonal or tridiagonal
operator, Scharmer introduced two additional, more complicated,
nonlocal operators that yielded a higher rate of convergence.
However the application of these operators to multilevel systems
led to considerable complexity and contained an arbitrary pa-
rameter (or two, in some applications by other workers) that had
to be determined by trial and error for optimal convergence.

Werner & Husfeld (1985), in an important paper which has
led to several important generalizations and applications, inves-
tigated diagonal and upper-diagonal operators that simplified
drastically the amount of effort needed to linearize the resultant
system. A crucial step towards the definition of an optimum
operator was then taken by Olson et al. (1986, hereafter OAB),
who showed that the diagonal part of the true lambda operator
provided a very efficient approximate operator with no arbitrary
parameter. Subsequently, Olson & Kunasz (1987) showed that
the tridiagonal and pentadiagonal parts of the lambda operator
converged even more rapidly.

Although we confine ourselves to planar models, we should
mention that spherical atmospheres with rapid gas flow have
been treated by Hamann (1985, 1986, 1987), using a parameterized
diagonal operator, and by Hempe & Schoenberg (1986) and
Schoenberg & Hempe (1986), who introduced a parameter-free
diagonal operator. Puls & Herrero (1988) have adapted the OAB
operator for spherical geometry, and Hillier (1990) has generalized
the Hempe-Schoenberg operator to tridiagonal and pentadi-
agonal forms with significant improvements in convergence.

Although the convergence of ALI methods with well-chosen
approximate operators is much more rapid than in the original
lambda iteration procedure, it is possible to obtain a significant
additional increase in the convergence rate by the use of purely
numerical techniques. Buchler & Auer (1985) introduced into ALI
methods an acceleration technique developed by Ng (1974); a
convenient description of this method is given by OAB. More
recently Klein et al. (1989) found an acceleration procedure due
to Vinsome (1976) to be even more efficient. Auer (1987) reviews
acceleration procedures for ALI methods.

Our work differs from that described above in several im-
portant respects. In most ALI methods so far developed, some
form of linearization of the statistical equilibrium equation must
be employed at every step in the iteration process; an exception
is Pauldrach & Herrero (1988), who, however, achieve linearity

at the cost of having to include two previous iterations in the
iteration procedure. We avoid this computionally expensive
calculation by “preconditioning” the statistical equilibrium equa-
tions, which automatically maintains their linearity. This pre-
conditioning analytically eliminates the effect of photons trapped
in the core of the optically-thick lines and consequently improves
the convergence of the method. In addition, we can construct the
diagonal part of the “true” numerical lambda operator in the
order of N, operations, where N, is the number of depth points,
and still maintain consistency with the method used to solve the
approximate transfer equation. Finally, we introduce the psi op-
erator, which is analogous to the lambda operator, but operates
on the emissivity rather than on the source function; the utility
of this operator is discussed below. In the present paper, we
present the analysis and sample results only for non-overlapping
lines with a background continuum, that is, a continuum with
specified opacity and source function, that does not change with
iteration. The analysis when continua are included is significantly
more complicated, because the preconditioning becomes com-
plicated when transitions overlap. These problems will be treated
in subsequent papers.

The formulation of our method is given in Sect 2, and a
description of the computer code, together with results for an
eleven level helium atom, as well as for a simple three level prob-
lem defined by Avrett & Loeser (1987), are contained in Sect 3.
Future work is outlined briefly in Sect 4. Two appendices present
important technical and computational developments. Appendix
A describes an improvement to Feautrier’s method that makes
it much more numerically robust, especially when very small
optical depth steps are encountered. Appendix B presents a fast
solution for the diagonal elements (or wider bands) of the inverse
of a tridiagonal matrix, which is useful for constructing approx-
imate lambda operators.

The analysis and computer code presented here is very useful
for application to molecular band problems, and has already been
used to investigate the formation of the 4.3 um band of CO, in
planetary atmospheres by Kutepov et al. (1991).

2. Multilevel formulation

The multilevel line problem is equivalent to the joint solution of
the equations of statistical equilibrium for the populations of the
levels and the equations of radiative transfer for the radiation
field. As discussed in Sect. 1, in this paper we treat the simple
case of the bound-bound transitions within a single ion in a plane-
parallel medium. The temperature and electron density are as-
sumed to be prescribed as a function of depth; we do not consider
temperature corrections or shifts in ionization balance. The con-
tinuum opacity and emissivity at line frequencies are also pre-
scribed as a function of depth. We include velocity fields using
an observer’s frame formulation; this allows for the treatment of
velocities not too much larger than thermal.

In plane parallel geometry the transfer equation for the specific
intensity I, is

al,,

u E = —Xuvluv + Ny s (21)

where y,, and 7,,, are the total opacity and emissivity at frequency
v and angle p.
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The ion is considered to have a number of levels, denoted by
the indices /, I', . . . . In addition to the population n,, each level
is characterized by its statistical weight g, and its energy E,. We
abbreviate the energy relations E, < E;, and E, > E,, > E, by
I <I"and I > I, respectively. The line radiative properties of the
ion are completely characterized by the emissivity ., the opacity
1, between each pair of levels for which a line transition is to
be considered. These quantities can depend on u when velocity
fields are present. For [ > I', they are given by

hv
{p, V) = — mApeu(u,v),
N, ) an @l v) 22)

hv
A, v) = in (ny By — mBy ) oy, v),

where A;;., By, and B, are the Einstein coefficients and ¢(u, v)
is the normalized line profile function. If the outward velocity in
the medium is v(z), then

ol v) = Gulv — vy — vypu(z)/c), 2.3
where v, is the line center frequency and @, is the normalized
profile function in the comoving frame of the material.

The line source function for the transition Il', | > I', is defined
by

mAy

S, =—
u B B
Ny By nBy

2.4)
For convenience we define the line source function to be sym-
metric in the indices l and I, so that S;; = S;;.. The source function
Sy 1s frequency-independent as a result of assuming the equality
of emission and absorption profiles, (the assumption of complete
redistribution) and is independent of p by assuming isotropic
scattering.

The total emissivity and opacity are given in terms of the
above line quantities by

nuv = Z, ”ll’(.ua V) + r’c(v) >
>l 2.5)
Xuv = l;l’ Xll’(#’ V) + Xc(v) >

where 7.(v) and y(v) are the background emissivity and opacity,
which are prescribed and do not change during the course of
solution (typically velocity fields do not affect these quantities,
so they are independent of p). The total source function is then
given by

S;lv = nuv/Xuv . (26)

The equations of statistical equilibrium for the ion populations
may be written,

ny Z(Rw + Cy) = z Ry + Cry), (2.7
[ v

where C, are the collisional rate coefficients and R are the
radiative rate coefficients, given by

Ry = Ay + ByJy, 1>1,
= Bu!jnr 3 l < ll. (2.8)
Also, J, is the integrated mean intensity, defined by
- 1
Tu =g [ 4 [y outu )L @9)

173
Thus, we may write Eq. (2.7) in the convenient form,
Ay — (np By — mBy)Jyp
l;l ["1 w — (B, — mByy) u]
- Z [nl’Al’l — (mBy — nl’Bl’l)jll’]
]
+ z (n,Cur - n,:C”) =0. (210)
T

The ALI scheme to be introduced here is based on the operator
splitting technique given in Eq. (1.2), which gives I, in terms of
the populations. It is important to note that S, as well as the
operators A,, and A, are constructed from the “old” populations
nf. (In general, a dagger denotes quantities evaluated using “old”
variables, from the previous iteration.) The “new” populations n,
enter only through the source function S,,, which is expressed in
terms of them by way of Egs. (2.6), (2.5), and (2.2). If this form
for I, is substituted into Eq. (2.9) and the resulting form for J,,,
is substituted into Eq. (2.10), then the statistical equilibrium equa-
tions are expressed solely in terms of known quantities and the
new populations n,.

The iterative method now proceeds as follows: An initial
choice for the old populations nf is made. This allows one to set
up the equations of statistical equilibrium (2.10). These equations
are then solved for the new populations n,. Regarding these to
be the old populations another cycle of iteration can be made,
and this process is continued until convergence is obtained.

Equation (1.2) describes a whole class of methods, each par-
ticular method being specified by its choice of approximate
lambda operator A,,. We now discuss the choices to be considered
here. First of all, we note that in practice the so-called exact
lambda operator A,, is itself an approximation based on some
discretization of the problem in space, and it appears as a matrix
operator acting on the values of the source function at the chosen
discrete spatial grid. One of the simplest choices for an approx-
imate operator is to take the diagonal part of this full matrix
operator; this is the choice made by Olson et al. (1986) in their
treatment of the two-level problem. As a better approximation
one might take the approximate operator to be the tridiagonal
part of the full matrix operator, or an even wider band approx-
imation.

The principal advantage of the diagonal approximation is
that the equations of statistical equilibrium remain completely
local, whereas more sophisticated band approximations, such as
tridiagonal, introduce nonlocalness into these equations, which
are then harder to solve, and may be more unstable. On the other
hand, for certain types of problems a tridiagonal approximation
may be desirable, such as those involving radiative equilibrium,
where a diffusion-like approximation is appropriate at large
depths. Our development here is general enough to emcompass
all of these possibilities.

We now derive linear preconditioned equations of statistical
equilibrium for a multilevel line problem with background con-
tinuum. In doing this we are motivated to preserve the linearity
of the original equations of statistical equilibrium, for reasons
of simplicity. We shall find that there are two primary impedi-
ments to achieving such linear equations: First, the quantity
(nBy. — n;.By,;) multiplies the mean intensity in Eq. (2.10), and
second, the source function S, in Eq. (1.2) is inversely propor-
tional to the opacity, which is linear in the populations. Because
of these difficulties, it is worthwhile to illustrate the general pro-
cedure for two simple cases using a local approximate operator,
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the first with no background continuum and the second with
background continuum. Each of these simple cases adds some
insight into the method. After this we treat the most general case
of nonlocal operator with background continuum.

2.1. Local operator with no background continuum

Since the lines are assumed non-overlapping, in the neighborhood
ofline II' we have S,,, = Sy, which is frequency-independent. Using
this in Eq. (1.2) we obtain, for frequencies near the line,

Iuv = A;vSll’ + szvf > (211)
where
I;‘vf = A,“,[S,",,] - A;vS{,, = I,'Qv — A8} (2.12)

The quantity I}, is the radiation field that one gets from the
formal solution with the old populations. Since the approximate
lambda operator here is local (i.e., diagonal), it acts like an or-
dinary multiplication in its operation on the source function.
Thus, brackets [...] are omitted on A,.

Substituting (2.11) into (2.9), we have,

Juw =4Sy + T, (2.13)
where,

Ay = [dQ [ dv oy, (2.14)
and

Tt = [dQ [ dv e, IS = Tf, — Ay Sk, (2.15)

are angle and frequency averages of A,, and I using ¢ as a
weighting function. The quantity

Tl =[dQ [ dveyll,, (2.16)
is the value of the integrated mean intensity obtained by inte-
grating over the “old” radiation field.

Substituting these results in Eq. (2.10), with the use of Eq.
(2.4), we obtain the preconditioned equations of statistical equi-
librium,

l;l [mAu( — Ay) — (nyByy — n,Bu:)jf'f,f]
_ l;[ [nzlAt'l(l - ;1-;1) — (mBy — nl’Bl'z)jflfrf]

+ ; (mCy — nyCpy) = 0. 2.17)
We see that the result of these substitutions is to leave the form
of statistical equilibrium equations the same as before, except that
the Einstein A-coefficient has been multiplied by the factor
(1 — 4;;), and the integrated mean intensity J,. is now replaced
by J5if. These are the same types of alterations that appear in
the core saturation method [Rybicki 1984; Eq. (5.14)], but where
now A, replaces the core normalization N.. The conditioning
of these equations is now improved, because much of the transfer
in the “core” of the line (described by the local part of the lambda
operator) has cancelled out analytically. These preconditioned
statistical equilibrium equations are clearly still linear in the ion
populations. Remarkably, for this simple case, the two impedi-
ments to achieving linearity discussed above have cancelled out,
so that no additional assumptions or approximations have to be
made.

Another desirable feature of these modified equations is that
they automatically guarantee non-negative solutions for the new
populations. This property follows from the non-negativity of the
modified rate coefficients. The non-negativity of Jf follows di-
rectly from its definition (2.15) as an average over I, which itself
is non-negative, since it is defined in Eq. (2.12) as (4, — 43,)
(a non-negative operator) acting on the old source function (a
non-negative quantity). The non-negativity of 1 — A}, can be
demonstrated as a special case of the preceding, namely, when
the source function is everywhere constant and equal to unity,
S}, = 1. Then the corresponding J§if > 0, and Eq. (2.13) implies
Ay < T} But also J}. < 1, since lambda operators act as av-
eraging operators. Thus 1 — A, > 0. Note that it is important
for the preceding argument that the approximate operator be the
diagonal of the “exact” A,,; otherwise one cannot be certain that
the operator (A4,, — 4,,) will be entirely non-negative.

Having completed this simple case, we now turn our attention
to the case of multilevel transfer with a background continuum,
but still using a local approximate lambda operator.

2.2. Local operator with background continuum

For non-overlapping lines, the total emissity and opacity in the
neighborhood of the the line II' are given by #,, = 1, + #4 and
Xuwv = X + Xow» Where # and y; are the values of 5, and y,
evaluated at the line frequency v;.. Then from (2.6),

Sy = 1Sy + (1 —ry)Seur, (2.18)
in the neighborhood of the Il transition, where,
= Xl v) (2.19)

T + e

It can already be seen that the remarkable cancellation of
factors that led to linear equations in the preceding section cannot
occur here, because the denominator is not simply proportional
to (m By — n;.By,)). One way to overcome this difficulty is to write,
instead of Eq. (2.18),

Suy =Sy + (1 —r})Ser (2.20)

where we choose to evaluate rj, using “old” quantities from the
previous iteration, that is,

o xhm)

, = . (2.21)
) + xar

This alteration does not affect the converged solution, since then

rfy = ry. Note that a dagger does not need to appear on y.,

since the background quantities do not change with iteration.
Using Eq. (2.20) in Eq. (1.2), we express I, as

1, = Ay hSy + IS, (222)
where now,
I = A,,[S1,] — ApurheSh = 1L, — ArhSh . (2.23)

Note the terms containing Aj.S,; have cancelled in Egs. (2.22)
and (2.23), because background quantities do not change with
iteration. Of course, the continuum source function still affects
the solution through its appearance in Si,.

Substituting (2.22) into (2.9), we have,

Jy = /i;rsu' +J. 1 (2.24)
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where,
Ay = §dQ [ dv oy Aty (2.25)
and

J = [dQ [ dv oy IS = Th — AyS}h (2.26)

J}h is given, as before, by Eq. (2.15). The quantity /i},l differs
from A}, defined in Eq. (2.14), by the additional factor rf. in the
integrations over angle and frequency. It is still a local operator,
and thus also acts as a scalar when applied to the source function
Sy

Substitution of these results into the equations of statistical
equilibrium (2.10) yields,

Z I:nlAll’(l - /I;z') — (ny By — "tBu')jleIf'f:I

r<i

- z l:nthl'z(l - AV;I') - (mBy — nt'B/'t)ijf'f]

">l

+ ;(n,C,,, —nCy) =0. (2.27)
Being linear in the populations, Eq. (2.27) again leads to a simple
lambda iteration scheme. The arguments of the last section can
be easily extended to show that the new populations are guar-
anteed to be non-negative, since the extra rf. factors satisfy
o<rl <L

One can see that the replacement of r;,. by rf. played a very
important role in achieving the linearity of Eq. (2.27); otherwise
the populations would appear in the denominator of r;. through
the dependence of y;. on n; and n;.. In the next section we make
a somewhat different choice to achieve linearity.

2.3. Nonlocal operator with background continuum

Nonlocal approximate lambda operators do not in general act
like scalars, and one must be careful not to commute depth-
dependent quantities with them. In this regard, we note that the
commuting of the factor (n,By, — n,B;,) through A}, and Aj.,
where it could cancel another factor, played a large role in achiev-
ing the linearity of Egs. (2.17) and (2.27). This simplification will
no longer be available.

For the purposes of this section it is convenient to write the
total source function as

Suy = 1Sy + (1 = 1i)Sar (228)
where,

* ! ,V

= Xu (.u ) (229)

(V) + e

This differs from Eq. (2.20) in that the numerator is evaluated
with the new opacity y;,- rather than the old one. The denominator
is still evaluated with the old opacity. Again, this does not affect
the converged solution, where 7y, = ry. Using Eq. (2.29) in Eq.
(2.9), we obtain,

I, = A;v[";l'su'] +T fﬁf: (2.30)
where now,
Tt = A,,[S1] — A [rSh] = 1L, — A3, [reSh]. (2.31)

175
Substituting (2.30) into (2.9), we have,
Ju = Ay [Su]+ T, (2.32)
where,
A~;l[] = I dQ I dv q’w/l;v[r;t' -1, (2.33)
and
o= [dQ [ dvoy It =T — Au[Sh]. (2.34)

Note in Egs. (2.30)-(2.34) that brackets are used with A}, and
Ay in order to emphasize their nonlocal nature.

Substitution of these results into the equations of statistical
equilibrium (2.10) yields,

Z I:ntAu' = (mByy — nlBll')Z;l’[Sll'] — (B — n,B,,,)f lelr'f]

r<i

- Z [nl'Al'l — (mBy — nz'Bt'z)Z;t'[Stt'] — (mBy — nl’Bl'l)j ftf'f:I

I'>1
+Y mCy —mCr) =0 (2.35)
v
We note that
. Pu
S A dQ | dv = ml, 2.36
wlSul = An i f f ouA, [X;rz + tar l:| ( )

is linear in the new populations n,. However, because of the factor
(m By — nyBy)) in front of this term in Eq. (2.35), the overall
linearity of the statistical equilibrium equations is spoiled. In order
to get linearity here, we choose to evaluate this factor using the
old populations, that is, we write,

lz I:":Au' - (n;r'Bl't - "I'Blr);{;t'[su'] — (mBy — ntBu')jftf'f]

3]

—lZl ["t'Am (n] By — n}By) Au [Su]— By — nz'Bw)jzezf'f:l
-

+ Z (mCp —mCr) =0 (2.37)

This equation may be put into a more convenient form, if we
define the operator A,, by the relation

(B, — n]By) Ay [Su]= Aw Ay [m] (2.38)
It follows that

Ayl = [a@ [avou A [rlecdyt 1, (2:39)
where

e = g By — nlBu), @40)

is the integrated line opacity in the II' transition, evaluated with
the old populations.
Equation (2.37) can then be put into the form,

Z [Au'(l - /irr)[”z] — (my By — nlBll’)j tctf'f:|

<1
- ; [Al'l(l - /i;»,)[n,r] — (mBy — nz'Bn)jzezf'f:l
>
+ ) (mCy —nCry) =0 (2.41)
=

where 1 is the identity operator, for which 1n, = n,.
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Equation (2.41) is the fundamental equation of the present
paper. It is clearly a linear equation in the populations and can
be used as a nonlocal ALI method for multilevel line problems
with background continuum. It was designed to be used with
nonlocal operators, but of course can be used with local operators
as well. However, it turns out to be completely equivalent to the
method given in Sect. 2.2 in the local case, since the . factors
cancel owing to commutivity in Eq. (2.39), which then becomes
identical to Eq. (2.25).

When used as a nonlocal tridiagonal method, Eq. (2.41) ap-
pears as a block tridiagonal matrix equation for the populations
at all depths. This can be solved by standard Gaussian elimi-
nation, analogously to the Feautrier method.

As we shall show, the convergence of the nonlocal method is
usually better than that of the local method. However, the non-
local method may fail where the local one would not; for example,
it is no longer true for the nonlocal method that the populations
are always guaranteed to be non-negative. In difficult cases it
may be necessary to use a local method, or perhaps to start the
iterations with a local method, switching to the nonlocal method
to obtain final convergence.

At several crucial stages in deriving Eq. (2.41), we chose to
evaluate certain quantities using old populations rather than new
ones. Admittedly, our particular choices are not unique, and there
are a number of other ways that could have been used to achieve
linear equations. To a large extent we have been guided by the
desire to obtain equations most like the simple ones of Sect. 2.1.
In treating more complex cases (such as continua arising from
the same ion and overlapping lines), there arise even more pos-
sibilities for seemingly arbitrary choices of this type.

However, as we shall show in subsequent papers, there are
fairly straightforward ways of limiting and organizing these
choices. For instance, the choices can be made much more natural
by introducing the psi operator, which is defined by

I, =¥,[n.], (2.39)

that is, it gives the formal solution for the intensity as an operator
acting on the emissivity rather than the source function. Because
the operators ¥, and A4, are each constructed from old variables,
Eq. (2.39) is not exactly equivalent to Eq. (1.1), except in the
convergence limit. Using this operator instead of the lambda
operator, the equivalent of the representation (2.28), with its par-
ticular definition of 7}, would have been made automatically.

In subsequent papers we shall make extensive use of the psi
operator. It will become apparent then that this operator, rather
than the lambda operator, is the more natural one to use for
deriving analogous simple iterative methods for multilevel prob-
lems. Basically this is because the emissivities functions are linear
in the populations while the source functions are not. We shall
show that refinements necessary to treat true continua and over-
lapping lines can be done with straightforward extensions of the
concepts already developed in this paper.

It is perhaps well to point out here that the preconditioning
schemes used in this paper not only leads to linear equations of
statistical equilibrium, but it leads to homogeneous equations as
well. This is consistent with our aim to obtain modified equations
that are as close as possible to the original ones. It also insures
the positivity of the populations, at least for diagonal approximate
operators. However, there may be compelling reasons to intro-
duce preconditioned equations that are nonhomogeneous in the
populations; this will be discussed in subsequent papers.

3. Computational features and results

We have incorporated the analysis given above into a Fortran
program called MALI-L (to distinguish it from MALI-C, which
includes bound-free transitions). This code allows for an arbitrary
atomic model, specified in terms of energy levels and statistical
weights. Radiative transition probabilities are specified in terms
of Einstein A-coefficients, which are input, while collisional rate
coefficients are specified as functions of temperature by subrou-
tines. After initialization, the code works entirely in terms of
transitions, which are classed as “active” or "passive”, depending
on whether or not the transfer problem is solved. Passive tran-
sitions include forbidden transitions, or allowed ones for which
the transfer problem is regarded as unimportant; the radiative
transitions are included in the equations of statistical equilibrium.
Transitions can also be set in detailed balance. Each line is spec-
ified by the choice of a Doppler or Voigt profile function, and
by a background opacity. An arbitrary velocity field can be spec-
ified, but, since the code uses observer’s frame frequencies, it is
only useful for velocities that are at most a few times the mean
thermal speed.

The iterations can be initialized in a number of ways: 1) by
asssuming LTE populations; 2) by using static escape proba-
bilities expressed in terms of the K,-function; 3) by assum-
ing a “coronal” approximation of optical thinness in all lines; and
4) by reading in an initialization file. In difficult cases one can
move to the case of interest by treating a succession of cases (with
decreasing electron density, for example), using each result as the
initialization of the next one.

The depth discretization is defined in terms of a column mass
density grid my, d =1, 2, ...,Np. For the preliminary investi-
gations reported here, we used a semi-logarithmic column mass
density grid, specified by the total column mass density M and
the number of depth points per decade p (in the logarithmic
portion of the grid, at large depths). One can choose between
two free boundaries, on one hand, and one free and one reflecting
boundary, for symmetrical atmospheres, on the other. In the first
case,

m M sinh ad (3.1
4™ 2 sinh (aNp/2) cosh a(d — Np/2)’ D

where a = In(10)/2p. In the second case, we have
M sinh ad (32)

M= S sinh (aNp) cosh a(d — Np)’

where now M is the total mass column density to the reflecting
surface at the midpoint. These forms are too restrictive for prac-
tical cases, but are ideal for investigations of the dependence of
the convergence rate on the grid spacing, of the sort done by
OAB.

Frequency and angle grids with corresponding quadrature
weights are defined. For each angle-frequency point the mono-
chromatic optical depths along the ray can be calculated to yield
an optical depth grid. In this way the formal solution of the
transfer problem is reduced to the solution of the Feautrier equa-
tions as given in Appendix A, which is significantly more robust
than the original form when dealing with very small optical
depths. In matrix form these equations take the form

(3.3)
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where T is a tridiagonal matrix constructed from the coefficients
Ay, By, and Cg, S is the vector of source functions, and u is the
solution vector of Feautrier variables. The solution can in prin-
ciple be written as

u=T"18, (3.4)

where T~ ! is the matrix inverse of T. For static problems this
implies that

T = (A + A_,)2. (3.5)

(With appropriate modifications, this also applies to cases with
velocity fields.) Thus the inverse of T is simply related to the
lambda operator. In the local approximation, the approximate
lambda operator A, (actually the average of this operator for u
and —p) is simply the diagonal part of the inverse of T. In the
nonlocal case, a band around the diagonal of the desired width
is used. We emphasize that the full inverse T~' never needs to
be constructed; the vector u is found by the method of Appendix
A and the diagonal elements (or a band) of T~ is found quickly
by the method of Appendix B.

Starting with a set of old populations the iterations proceed
as follows: For each angle-frequency point the formal solution
of the transfer problem is solved, along with the diagonal elements
(or a tridiagonal band) of T~ L. These quantities are accumulated,
with the appropriate weights, to eventually yield J}. for each
transition and the elements of the operator Aj;, and thus also
the operator Aj.. From these, the quantity J&f can also be con-
structed. We thus obtain the coefficients of the preconditioned
equations of statistical equilibrium (2.41), which are either com-
pletely local, or may themselves be tridiagonal in depth. These
equations are then solved for the new populations, completing
the iteration cycle.

The convergence of MALI-L is monitored by forming the
relative changes in all populations at all depths in the last iter-
ation. From these is found the relative change of maximum ab-
solute size; this is called C,, where k is the iteration number. When
|C| becomes less than a certain prescribed value, the method is
deemed to have converged. For all the cases treated in this paper,
we have also calculated the “true” relative error of maximum
absolute size E, at the k-th iteration, based on the “exact” solution
(found by a preliminary long run with the fastest method).

Convergence is accelerated by application of Ng’s (1974) pro-
cedure, applied to all the level populations at all depths. Two
control parameters are specified, the iteration number at which
the acceleration method is first applied, and the number of pre-
vious iterations that are used. The behavior of Ng’s method and
the optimal values of the control parameters will be discussed
below.

We have also included a re-gridding procedure, so that an
approximate solution can be obtained with a coarse grid, which
leads to rapid convergence, and then all level populations are
interpolated onto a finer grid.

3.1. Comparison with a three-level model calculation

Avrett & Loeser (1987) presented results for a simplified three-
level hydrogen atom with lines but no continuum. The semi-
infinite medium was assumed to be isothermal at a temperature
of 5000 K. They treated two cases: 1) with constant collisional
rates; and 2) with collisional rates that fall rapidly in a narrow
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layer near the surface. These results are well suited for compar-
isons with other codes, since their model was specified completely,
including atomic data.

We solved both Avrett-Loeser cases 1 and 2 using MALI-L.
The initial populations were chosen to be those appropriate to
LTE. Four cases were run, using a diagonal (D) operator or the
tridiagonal (T) operator, and using no acceleration (N) or Ng
acceleration (A); the ceses are thus denoted D/N, D/A, T/N, and
T/A.

Considerable experimentation with Ng’s method showed that
if it was turned on too soon, it converged slowly or not at all. It
appears to be important to wait until the changes in the successive
iterations become small enough to be roughly represented as
linear perturbations (|C;| S 1). For the present case, good results
were obtained by turning the acceleration on at k = 20 using 7
previous iterations for the diagonal (D) case, and at k = 10 using
5 previous iterations for the tridiagonal (T) case.

The detailed convergence properties of the runs for Avrett-
Loeser case 1 are given in Fig. 1. The solid curves are for |Cy|
and the dotted curves are for |E,|. For the non-accelerated cases,
it can be seen that at large k the two curves become straight lines
of the same slope on this semi-log plot, with |E,| larger than |C,|
by a certain constant factor. With no acceleration, a true accuracy
of about 19 is obtained after about 80 iterations with the diagonal
method (D/N) and about 25 iterations with the tridiagonal
method (T/N).

When Ng’s acceleration method is used, the convergence is
greatly improved. Now a true accuracy of 0.01% is obtained after
about 25 iterations with the diagonal method (D/A) and about
12 iterations with the tridiagonal method (T/A). Furthermore,
after the acceleration is begun, the quantity |C,J, which can easily
be computed during the course of iteration, becomes a fairly good

B \\V;\I\l\ T T T | T T T l T T T ]

op ~~._ H: A-L Case 1 7]

=) C T~ ]
] - -
a R —
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& L B
Ly ~
) - .
o L _
T -6 ]
a N i
S -8l -
Qo - -
2 - _
-10 | ]

k | | 1 ]
0 20 40 80 80

k (Iterations)

Fig. 1. Convergence plots for Avrett-Loeser case 1. |C,| is the maximum
absolute relative change (solid curve), and |E,| is the maximum absolute
relative true error (dasbed curve), in the populations at iteration k. The
labels on the curves refer to different runs, using either a diagonal (D)
or tridiagonal (T) approximate operator, and using either no acceleration
(N) or Ng’s acceleration method (A)
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estimator of the true error |E,|. In any case, the rate of convergence
is so high after acceleration that one can afford to set a more
stringent convergence criterion than one really needs.

These convergence results were found to be relatively insen-
sitive to the order of the frequency and angular quadrature. How-
ever, as expected from the discussion of OAB, the rate of con-
vergence did depend on p, the number of depth points per decade.
In order to reproduce the detailed results of Avrett-Loeser for
the source functions as functions of optical depth to about 1%,
it was necessary to use about 20 frequency points and 3 angle
points. It was also necessary to use about 96 depth points (~6
points per decade) with the usual second-order difference scheme
for the Feautrier method; with the fourth-order difference method
of Auer (1976) only 70 depth points (~4 points per decade) were
required.

We emphasize that a number of iterations found here (even
for runs D/N) compares very favorably with those quoted by
Avrett & Loeser (~ 10), since the iterations here are very much
faster and simpler. Furthermore, the scaling for large problems
is much more favorable. The only full matix operations required
in each iteration for the diagonal method are those to solve the
equations of statistical equilibrium for each depth, so the timing
scales as ~ NpN3. The tridiagonal method requires the solution
of a block tridiagonal system for the populations, but the timing
for this also scales as ~NpN3 (but with larger coefficient).

We also solved the Avrett-Loeser case 2 using exactly the
same method. We found that the convergence properties of this
case were virtually identical to those of case 1. Despite the rapid
change in collision rates near the surface, we encountered no
difficulties of any kind, unlike the experiences reported by Avrett
& Loeser with their method.

We also solved a model six-level hydrogen problem, including
levels through n = 3. The medium was taken as semi-infinite and
isothermal at T, = 10* K. Collisional rates were computed by
fits to theoretical calculations as described in Hummer & Storey
(1987). For densities larger than about 10!° ¢cm ™3, the conver-
gence results were very similar to the Avrett-Loeser cases. For
lower electron densities difficulties arose due to population in-
versions between some of the upper states. We did not pursue
this model further, because of its physical inadequacies: a lack of
any couplings to a continuum and neglect of line overlapping
within multiplets.

3.2. An eleven-level neutral helium model

We also applied MALI-L to a model He I atom with eleven levels
(singlets and triplets through n = 3). Two cases were treated: 1)
a semi-infinite medium with constant N, = 10'* cm™~3; and 2) a
finite medium (mass column density of 3 107% g-cm~2) with
constant N, = 10!° cm~3. Both cases were isothermal at T, = 2
10* K. Radiative data was taken from Wiese et al. (1966) and
collisional rates were fitted to Chebyshev polynomials by Hum-
mer & Storey (unpublished) from the cross sections calculated
by Berrington & Kingston (1987). Each of these cases was solved,
as before, with four runs using the diagonal or tridiagonal method,
and using acceleration or no acceleration. Here the Ng acceler-
ation was begun at k = 25 for the diagonal method and at k = 15
for the tridiagonal method.

Case 1 was initialized assuming LTE. The convergence of the
methods is shown in Fig. 2, where the notation is the same as
for Fig. 1. The numbers of iterations now are somewhat larger
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Fig. 2. Convergence plots for the eleven-level neutral helium model case
1, semi-infinite medium with N, = 10'*cm ™3

than for the Avrett-Loeser case, but the overall behavior is re-
markably similar.

Case 2 could not be solved with the LTE initialization, since
population inversions appeared almost immediately. However,
using the escape probability initialization, the iterations did con-
verge, as shown in Fig. 3. Here the numbers of iterations are
considerably larger, and the pattern of the error curves is no-
ticeably different than the case in Fig. 2; note especially the break
in the |C,| curve at about k = 50. Clearly the more severe non-
LTE character of the problem at lower electron densities causes
the method to converge more slowly. Even so, convergence to a
maximum relative error of 10~ was achieved in only 17 iterations
with the tridiagonal method and Ng’s acceleration method.
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Fig. 3. Convergence plots for the eleven-level neutral helium model case
2, finite medium with N, = 10'°cm ™3
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As a further test of MALI-L, we also applied it to a model
nineteen-level neutral helium atom (levels through n = 4), with
model parameters the same as the above helium case 1. Collisional
rates here were augmented by unpublished data for transitions
involving n = 4. The convergence properties of this nineteen-level
case was virtually identical to the eleven-level case 1. This be-
havior, plus the analogous behavior seen in the six-level hydrogen
model, suggests that the convergence of complicated, multilevel
problems is probably no worse (nor better) than simple models
with just a moderate number of the lower levels.

4. Final remarks

The methods of this paper have been shown to provide a fast
and reliable method for solving multilevel transfer problems in-
volving non-overlapping lines with background continuum. In
further papers of this series, we shall show that these methods
can be generalized to treat more complications, including active
continua and overlapping lines. The preconditioned equations
derived in this paper form very useful prototypes to guide the
derivations of similar equations in problems with greater physical
complexity.
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Appendix A: improved Feautrier solution

In static, plane parallel media, the transfer equation can easily
be put into the Feautrier form

d?u

@S

(A1)
where S is the source function, u = (I, + I_,,)/2, and 7 is the
monochromatic optical depth along a ray at angle u (Feautrier
1964). This can be generalized to spherical and moving media as
well (see, e.g. Mihalas 1978). Straightforward discretization of this
equation for an optical depth grid 7,,d = 1,..., Ny, leads to the
tridiagonal system

—Agug—1 + Baig — Cathg 1 = Sy (A2)

The convention for signs in this equation reflects the fact that
Ay, By, C,, and S, are typically all positive. For the simplest,
second-order difference scheme, the quantities 4, B;, and C, are
given for 2<d < N, — 1 by

= 2 B,= + _2__
Aty Aty + A1)’ 4 At Ay’

_ 2

T Aty + A1)

Ay
Cs (A3)

where 41, = 1,,, — 14. The coefficients ford = 1 and d = N are

179

special and depend on the boundary conditions chosen; these can
also be made second-order accurate using the method of Auer
(1967).

The linear system (A2) is solved by Gaussian elimination.
Augxilliary variables D, and Z, are introduced by the recurrence
relations

Ddz(Bd"AdDd—l)—lcd, D, =Bx_1C1,
Zy=(By— ADy—1)" "(Sa+ AsZs-1), Z,=B'S,, (Ad)
after which one finds,

Ug=Dahg1 + Zs, Un,+1=0. (A5)

The Feautrier method has proved to be an extremely useful
technique for solving transfer problems. However, some difficul-
ties with the method occur when dealing with small optical depth
increments. We present a method that overcomes this difficulty
in two ways: first, a particular cancellation between the coefficients
is taken into account; and second, a new set of variables is in-
troduced in the elimination scheme that lead to better numerical
conditioning.

Small optical depth increments At cause problems in the B,
coefficient when the first term (unity) becomes lost to machine
precision when compared to the second term, which is order
(A1)~ 2. This difficulty can be alleviated by analytically eliminating
B, in favor of the linear combination of coefficients.

Hy= —A,+ B, — C,, (A6)

with special cases H; =B; — C; and Hy, = —Ay, + By,,.
For the particular set of coefficients given in (A3), we have
H,=1for 2 <d< Np— 1, but we shall keep the notation H,;
for generality.

Problems also occur in the elimination scheme, since the val-
ues of D, can become very close to unity, and the difference can
be lost in the numerical precision. Our solution to this problem
is to introduce the new auxilliary variable

F,=D;'—1, (A7)

so that D; = (1 + F))~ L
With these new variables, the elimination scheme (A4) be-
comes,

AgF ;- _
Fd=<Hd+1£;djl)Cdla Fy=H,/C,,
_Sa+ AdZs-  p-1
“=TCA T Fy Z,=B{'S,, (A8)
followed by
ug=(1+F) "uger1 +Zy,  uyy+1=0. (A9)

An indication of the good numerical conditioning of these equa-
tions is that only positive signs appear in them. This implies firstly
that the auxilliary quantities introduced here are all positive, and
secondly that extreme cancellation problems simply cannot occur.

These equations have been used to solve test problems with
very small optical depth increments, of order At ~ 10~ !5, using
32 bit arithmetic with no difficulties. It is important to understand,
however, that while this method is not much limited by machine
precision, it is limited by the machine exponent range. In particular,
the method cannot treat cases where the optical depth increments
actually vanish.
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Appendix B: fast solution for the diagonal elements of the
inverse of a tridiagonal matrix

Let T be an N x N tridiagonal matrix and let its inverse be
A= T~!. We shall show here how the entire set of diagonal
elements 4;, 1 <i < N, can be found in order N operations.
The equation for the inverse can be written TA = 1, or, in
component form,
—Ai)'i—l,j-l- Bi).ij~ Ciﬂ,i+1,j=5,-j. (Bl)
For any fixed value of j this equation can be solved by one of
two forms of Gaussian elimination. In the usual implementation
the elimination proceeds from i = 1 to i = N, followed by back-
substitution fromi= N toi =1,

D;=(B;— AiDi—l)_lcis D, =0, (B2)
Zij=(B;— ADi- )" 'y + AiZi 1), Zy;=0, (B3)
Aij = Didiy1,;+ Z;;, An+1,;=0. (B4)

It is also possible to implement the method using the reverse
order,

E;=(B;— CiEi+1)_1Ai: Ey:1 =0, (BS)
W;=(B; — CiE;+ 1)_1(5ij + CiWir1,)), Wyiy,;=0, (B6)
Aij = Eidi-y,j+ Wy, 2;=0.  (BY)

The crucial idea of the present method is to use parts of both of
these implementations to find the diagonal elements 1.
Since d;; = 0 for i # j, it follows from Eqs. (B3) and (B6) that

Zij =0, (BS)
W;=0, (B9)

Thus, from Egs. (B3) and (B4) we obtain, for special choices of i
and j,

fori<j,

fori>j.

Zy=(B;— AiDi—l)_l P (B10)

Ai = Didiv1,i + Zy, (B11)
/1i—1,i =Di_y Ay, (B12)
Similarly, from Egs. (B6) and (B7),

Wi = (B; — CiE;» 1)—1 s (313)

Aii = Edi—y i + Wy, (B14)
Aivt,i = Eiv1dy. (B15)

From Egs. (B10), (B11), and (B15) we eliminate Z;; and 4, ;
to obtain

A= (1 — DiE; 1)_1(Bi - AiDi—l)_l . (B16)

The right hand side now depends only on the single-index quan-
tities 4; and B;, which are given, and D; and E;, which can be
found by two passes through the depth grid, using the recursion
relations (B2) and (BS). Thus all 1; can be found in order N
operations.

If one is already performing a formal solution of the transfer
equation based on the matrix T, there is very little extra work
involved in determining the diagonal elements A;;, since the quan-
tities 4;, B;, C;, and D, are common to both problems. One needs
only to include the recursion relation (B5) as part of the back-
substitution to find the E;. The quantities (B; — A;D;_,)~! are

required for the recursion relations (B2) and (B3), so they are
most conveniently stored, rather than recomputed, for use in
equation (B16).

An alternate set of equations for obtaining 1; can be found
by using Equations (B12), (B13), and (B14), eliminating W, and
Ai—1,; to obtain

iii = (1 - EiDi—l)—l(Bi - CiEi+ 1)_1 . (B17)
This form is more convenient if the associated formal solution
of the transfer equation is being done in reverse order, starting
with recursions from i =N to i = 1.

Once the diagonal elements 4;; have been found, off-diagonal
elements can be found from the recursions relations,

’lij = Di)‘i+1,j,
Aij= Ei)‘i-—l,p

fori<j, (B18)

fori>j, (B19)
which follow from Egs. (B4) and (B8), and from Egs. (B7) and
(B9), respectively. Thus a band of width M about the diagonal
can be found in order MN operations. The entire inverse could
in principle be constructed in this way in order N2 operations;
however, this is not an obvious improvement over the usual
method, which also requires of order N? operations.

We have implicitly assumed that the elements of the tridi-
agonal matrix Tand its inverse A are scalars, and thus so are all
the various auxilliary quantities introduced here. However, it
should be noted that all formulas of this appendix have been
written in forms that will apply as well to block tridiagonal
matrices. In that case the term “operations” must be interpreted
to mean “block matrix operations,” so that the method would
require of order NF? scalar operations for blocks of size F x F.

The method of this appendix can also be formulated in terms
of the improved Feautrier solution of appendix A, thus giving it
the advantage of better numerical conditioning. Such a formu-
lation has been incorporated into a FORTRAN subroutine,
which simultaneously solves the formal solution and solves for
a band of the inverse operator. This routine has been extensively
used in the code MALI-L and has proven itself to be reliable
and accurate.
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