QUICKSTART GUIDE

Coherent Structure Tracking (CST) codes

Version 1.1 - April 23, 2020

Thierry Roudier (IRAP, Toulouse) Martine Chane-Yook (IAS, Orsav)

Running CST with ifort compiler and SSWIDL software on Linux system

- **Download** the package source file CST_V1.1.tgz from MEDOC/TOOLS • webpage
- **ifort** compiler and **SSWIDL** software are required. Type the following linux • commands:
- tar -xvzf CST_V1.1.tgz ٠
- cd CST_V1.1
- The directory contains 1 directory (codes_data_JSOC) for taking • automatically HMI data from JSOC and 2 directories corresponding to 2 different cases : a test case (29 Nov 2018 HMI observations – 30 min) to be able to check if your results are good (« **CST_TEST_30min** » **directory**), source codes to treat from 1 to 6 observation days (« CST 1 TO 6 DAYS » directory, adapted for the day 29 Nov 2018 HMI observations).
- Each of these directories (corresponding to the 2 different cases above) contains the following files:
- 1. Fortran files (« codes_CST_Fortran » directory):
 - cst_labv7_FS_2017.f90 (main program)
 - Makefile.common (used to compile librairies that are in « lib » directory)
 - deriw2d.f90

- detect.f90

- div_curl.f90

- mres2d.f90

- opt_scale.f90

- the_name.f90 (contains thename module)

- segment.f90 (contains segmentation module)

- cg.f90

- interpol2d.f90

- interpol2dth.f90

- interpol2d_routine.f90 (contains_interpolationroutine module)

- interpol2d routine short.f90

- centre gravite.f90

- input.f90 (contains input subroutine)

- sub_coef_r.f90

- ftw3.inc, form_num.inc, Makefile.inc

- « lib » directory contains librairies needed for compilation

- Makefile (file to modify): variables CFLAGS and CFLAGS_LIB are to be adapted according to your server (-I/usr/include/x86_64-linux-gnu/c++/8)

- script_29nov2018.sh (file to modify): according to your server, you need to add or not the following commands :

« source /opt/intel/compilers_and_libraries_2018.3.222/... » : path to Fortran ifort compiler

« ulimit -s unlimited »

- param_seq_29nov2018_EOS_30mn (file to modify) :

the following parameters are to be adapted according to the HMI/SDO data: prefix, input_file, arcsec, pixel

2. IDL files (« codes_CST_IDL »directory):

- reduction_doppler_intensity_all_days_apres.pro
- reduction_doppler_intensity_all_days_avant.pro
- step3_CST_IDL_apres.pro
- step3_CST_IDL_avant.pro

- image_cont.pro : to read the binary file « image_cont » (see STEP 2)

• **Procedure to take HMI intensity and Doppler data** from <u>JSOC</u> (45s-cadence HMI files are not available at MEDOC) :

An automatic procedure to take SDO/HMI data from JSOC is proposed by T. Corbard (OCA).

``codes_data_JSOC" directory contains 3 codes (exportfile.csh, url_escape.pl, gethmi_cst.pro) to run in order to download automatically SDO/HMI data (29 November, 2018, 8:00 to 8:30, for example).

In order to get the HMI data in the directory /data/cluster/workshop_CST2020/ day1_apres/, type the following commands in the directory which contains the three codes (exportfile.csh, url_escape.pl, gethmi_cst.pro):

- 1. chmod +777 exportfile.csh
- 2. .r gethmi_cst.pro (with IDL)
- 3. gethmi_cst,'your_registered_JSOC_email_adress',date_s=[11,29,2018,8,0],date _e=[11,29,2018,8,30],out_dir='/data/cluster/workshop_CST2020/day1_apres/',/ exec (with IDL)

Here is the manual procedure to take HMI data directely from JSOC website. But you can see that automatic procedure introduced above is certainly the fastest one.

- 1. on the <u>JSOC</u> webpage, click on data access and then in look data (top of the page)
- 2. click on Fetch seriesname list
- 3. select hmi.Ic continuum intensities with a cadence of 45s
- 4. write for example 30 mins on November, 29, 2018 :

hmi.Ic_45s[2018.11.29_08:00_TAI-2018.11.29_08:30_TAI]

or for one day : hmi.Ic_45s [2018.11.29/1d].

See examples on the web page for different requests

- 5. click on GetRecordCount (this gives you the number of files requested)
- 6. click on Export Data (top of the page)
- 7. click on Export (on the right)

- 8. click on method and get url-tar
- 9. fill the *notify* with your E_mail address. An email will be sent to you to confirm your registration
- 10. fill *Requestor* with your name
- 11. click on Check Params for Export
- 12. when green click on Submit Export Request
- 13. an email will be sent to you with the link for downloading the data in tar format : JSOC_20191104_699.tar. Click on tar file link to download on your PC or type the linux command to get results from a server for example :

wget http://jsoc.stanford.edu/.../JSOC_20191104_699.tar

Type the following linux command: tar -xvf JSOC_20191104_699.tar

You get 41 files from hmi.Ic_45s.20181129_080000_TAI.2.continuum.fits up to hmi.Ic_45s.20181129_083000_TAI.2.continuum.fits.

For 1 (HMI observation) day, we get 1920 files (one file each 45 seconds)

14. repeat operation at point 4 to download Doppler hmi.V_45s – Dopplergrams with a cadence of 45s.

Data size for 30 min HMI observations (intensity and Doppler) is **2.7 G**. **Data size for 1 day** HMI observations (intensity and Doppler) is **63 G**.

• CST codes can be run up to 6 days (cf « CST_1_TO_6_DAYS » directory) : the reference day is the 4th day (the reference of the center of the Sun and the

Solar radius are taken at 00:00 of the 4th day). More precisely, for 6 days,

transfer the intensity and Doppler data in each directory corresponding to

the day of the sequence:

- « day3_avant » directory: 1st day data
- « day2_avant »directory : 2nd day data
- « day1_avant » directory : 3rd day data
- « day1_apres » directory : 4th day data (reference day)
- « day2_apres » directory : 5th day data
- « day3_apres » directory : 6th day data

First, you must create these directories and second, put data inside.

Note : to run CST codes for 4 days, the 2nd day is the reference day.

- For the test case of 30 min HMI observations, you must create « day1_apres » directory and put the HMI data (intensity and Doppler) inside.
- Create the result directorys « treated_day1_ap » for 1 observation day (or for 30 observation min), « treated_day1_ap » and « treated_day2_ap » for 2 observation days, ...
- Adapt the following parameters in reduction IDL files (
 reduction_doppler_intensity_all_days_apres.pro and
 reduction_doppler_intensity_all_days_avant.pro) :
 path, path_out, rota (=0 for standard rotation (quiet Sun) or =1 for rotation
 measured directly on the data), path for « tmp » (temporary) directory and
 check that tmp directory has free space in memory

• STEP 1 : CST IDL PART

To prepare input data for CST Fortran program, **type the following commands**

with SSWIDL for the test case (30 min HMI observations), in

« codes_CST_IDL » directory:

- 1. .r reduction_doppler_intensity_all_days_**apres**.pro
- 2. .r reduction_doppler_intensity_all_days_**avant**.pro (depending of the treated case)

For 1 to 6 days HMI, type the following commands with SSWIDL :

- 1. .r reduction_doppler_intensity_all_days_apres.pro
- 2. reduction_doppler_intensity_all_days_apres.pro,nombre_j,rota
- 3. .r reduction_doppler_intensity_all_days_**avant**.pro (depending of the treated case)
- 4. reduction_doppler_intensity_all_days_**avant**.pro,nombre_j,rota (depending of the treated case)

The order in which the IDL codes are run is important : the reference day is chosen in the first code « reduction doppler intensity all days **apres**.pro ».

For example, for 1 observation day, the output files are (in FITS format) in « treated_day1_ap » directory :

- co latitude HMI 4096.fits

- co latitude HMI 586.fits

- day1 apres int derot 000.fits, ..., day1 apres int derot 1909.fits (inputs for CST fortran code)

- Doppler derot 30mn.dat
- Doppler derot raw 0001.fits, ..., Doppler derot raw 1909.fits
- Doppler derot smooth 0001.fits, ..., Doppler derot smooth 1910.fits
- Doppler limb4096 0001.fits, ..., Doppler limb4096 1910.fits
- Doppler raw 0001.fits, ..., Doppler raw 1910.fits
- Doppler smooth 0001.fits, ..., Doppler smooth 1910.fits
- Doppler with rotation.dat
- latitude HMI 4096.fits
- latitude HMI 586.fits
- longitude HMI 4096.fits
- longitude_HMI_586.fits
- SDO Dop cormvt 0001.fits, ..., SDO Dop cormvt 1910.fits
- SDO_seq_doppler_0001.fits, ..., SDO_seq_doppler_1910.fits
- SDO seq int avec rot 0001.fits, ..., SDO seq int avec rot 1909.fits

If there are not 1920 files (corresponding to 1 day), it is necessary to complete from the last (copy the last file). So we have a measure of the last half hour with a lower amplitude.

For 30 min HMI observations, we have :

- . . . - day1 apres int derot 000.fits, ..., day1 apres int derot 41.fits - ...

For 6 days HMI observations, we have :

- ...

- day1 apres int derot 000.fits, ..., day1 apres int derot 1909.fits

- day2 apres int derot 000.fits, ..., day2 apres int derot 1909.fits
- day3 apres int derot 000.fits, ..., day3 apres int derot 1909.fits
- day1_avant_int_derot_000.fits, ..., day1_avant_int_derot_1909.fits

- day2_avant_int_derot_000.fits, ..., day2_avant_int_derot_1909.fits

- day3_avant_int_derot_000.fits, ..., day3_avant_int_derot_1909.fits
- ...

If there are not 1920 files for each day, it is necessary to complete from the last (copy the last file).

Warning: Data reduction uses the same ``temporary'' directory (/tmp) when reading SDO data. So you should not run the IDL code for 2 data sets at the same time, otherwise the SDO decompression files (in /tmp directory) will be destroyed by the 2nd IDL run.

• STEP 2 : CST FORTRAN PART

Choose 18 threads for an optimal run. To compile and execute fortran files, here are the commands for SLURM, in « codes_CST_Fortran » directory:

sbatch script_20nov2018.sh

The output files are for each 30 mn (in « JOB_XXXX/results » directory) :

- output.log : to check if CST code runs well

- image_cont : last segmented image of the Sun in binary format (visualized by an IDL program « image_cont.pro » (with SSWIDL : .r image_cont.pro))

- param_seq_29nov2018_EOS_30mn : parameters used

- traject_11_0000 : trajectories of all selected granules. The second number of the first line is the total number of treated granules. Column 1 is the granule number, column 2 is x_cent (gravity center), column 3 is y_cent, column 4 is the number of the image where the granule is born, column 5 is the number of the image where the granule dies, column 6 is the lifetime of the granule in second, column 7 is the velocity ux (in km/s), column 8 is the velocity uy (in km/s)

- nb_gran_0000 : pixel size chosen for the spatial window, 1 arcsec in km, pixel size in arcsec, treatment threshold of CST code

- ux_b_0000, ux_h_0000, ux_l_0000, ux_m_0000, ux_k_0000

- uy_b_0000, uy_h_0000, uy_l_0000, uy_m_0000, uy_k_0000

- div_b_0000, div_h_0000, div_l_0000, div_m_0000, div_k_0000

- rot_b_0000 , rot_h_0000, rot_l_0000, rot_m_0000, rot_k_0000

- err_b_0000, err_h_0000, err_l_0000, err_m_0000, err_k_0000

- ux,uy,div,rot, sampled on a regular grid , traj contains the trajectories of each granule .

ux_b_0000 file is for the first 30mn. The last 0 refers to time in 'time window unit' (and following ux_b_0001 for the following 30mn etc. the last 1 refers to time in 'time window unit').

- raw : b (brut) raw ux and uy from CST (586x586 pixels)

- high: h: first high resolution wavelet filter (Daubechies)

- middle: m second wavelet filtering (Daubechies) half resolution of "h"

- large : l third filtering by wavelet (Daubechies) resolution half of "m" p

- extra-large: k fourth filtering by wavelet (Daubechies) resolution half "l"

For example the most common with the SDO data the resolution will be (if we take bin_sp = 7 (pixels) h = 2.5 Megameters (Mm), m = 5.0 Mm, l = 10Mm, k = 20 Mm output file speeds (ux, uy) on a size of **586x586 pixels**, latitude, longitude and Doppler files are also set to this size and directly superimposable.

In the Fortran main program (cst_labv7_FS_2017.f90) which calculates horizontal speeds, a circular mask is used to properly zero the data outside the Sun. This mask is fixed once and for all in the program with the following parameters in pixels:

R_sol = 1873 x_cent = 2054.47 y_cent = 2048.21.

As the diameter of the Sun changes with time, it is possible that in some times the mask is a little bit smaller than the solar disk. We can so modify R_sol, x_cent, y_cent if this needed. Anyway even with a mask smaller, the program output V_x and V_y speeds are surimposable to Doppler and latitude and longitude grids in 586x586 pixels.

• STEP 3 : CST IDL PART

- 1. **Copy all ux and uy files from the « JOB_NNNN/results » directory to the « treated_day1_ap » directory.** These files are needed as input data for IDL codes above
- 2. Adapt the following parameters in IDL files (in « codes_CST_IDL » directory):

- step3_CST_IDL_apres.pro : **path** (path to original fits HMI files), **path_out** (path to result directory : treated_dayX_ap), **path_vit** (directory where are velocities ux, uy with and without rotation. Generally, it is the same path as path_out), **derot** (=1 : velocities without solar rotation; = 0 : velocities with solar rotation), **nombre_j** (number of days)

- step3_CST_IDL_avant.pro : path (path to original fits HMI files), path_out (path to result directory : treated_dayX_ap), path_vit (directory where are velocities ux, uy with and without rotation. Generally, it is the same path as path_out), derot (=1 : velocities without solar rotation; = 0 : velocities with solar rotation), nombre_j (number of days)

 With SSWIDL, type the following commands : .r step3_CST_IDL_apres.pro .r step3_CST_IDL_avant.pro (depending of the treated case)

For example for 6 days HMI observations , **the output files are for each day after and before :**

- Vr_Vtheta_Vphi_derot_day1_ap.dat
- Vr_Vtheta_Vphi_derot_day2_ap.dat
- Vr_Vtheta_Vphi_derot_day3_ap.dat
- Vr_Vtheta_Vphi_derot_day1_av.dat
- Vr_Vtheta_Vphi_derot_day2_av.dat
- Vr_Vtheta_Vphi_derot_day3_av.dat

Warning: IDL codes of step 3 use the same « temporary » directory (/tmp) when reading SDO data. So you should not run the IDL codes for 2 data sets at the same time, otherwise the SDO decompression files (in /tmp directory) will be destroyed by the 2nd IDL run.

For example, « treated_day1_ap » directory (for 30 min HMI observations) size is 19 G and « JOB_XXXX» directory size is 590 M (in « codes_CST_Fortran » directory).

For example, « treated_day1_ap » directory (for 1 day HMI observations) size is 854 G and « JOB_4174 » directory size is 11 G (in « codes_CST_Fortran » directory).

As the volume of the result data is huge (« treated_day1_ap » directory), we will give only results of step 2 (Fortran part) and results of step 3 corresponding to 30 min HMI observations.

CONTACTS

If you have any question about the installation or the run of CST codes, please send a mail to :

<u>thierry.roudier@irap.omp.eu</u> <u>martine.chane-yook@ias.u-psud.fr</u>

CST MEDOC WORKSHOP

A workshop was dedicated to the training and use of the Coherent Structure Tracking (CST) software. It took place on March 3-4, 2020 at <u>IAS</u> in Orsay, France : <u>https://cst2020-medoc.sciencesconf.org/</u>

Part of the workshop was devoted to the explanation of the installation of this CST code on their own servers as well as the various precautions to take.

Presentations are available on : https://idoc.ias.u-psud.fr/MEDOC/CST%20codes

